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Abstract: Plane-wave density functional theory has been applied to determine the
strengths of hydrogen bonds in the phase I crystal structures of ammonia and urea.
For ammonia, each component of the trifurcated hydrogen bond has been found to
be almost as strong as a standard N-H ¥ ¥ ¥N interaction, and for urea the strengths of
the two different N-H ¥ ¥ ¥O interactions have been determined by a quantum
mechanical technique for the first time.
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Introduction

Estimating the energy of hydrogen bonds[1] in the solid state
by experimental means is a complex business, and often all the
information a chemist would desire cannot be directly
measured. For example, in order to identify the principal
driving forces responsible for crystal packing, it would be
necessary to determine the strengths of all of the different
hydrogen bonds present, rather than an average value that
may be obtained on the basis of thermochemical measure-
ments. In recent years chemists have increasingly turned to
computational methods to explore intermolecular interac-
tions. However, whilst the phenomenon to be modelled
frequently arises due to the periodic nature of the crystal
lattice, the nature of the calculation often employed [i.e., ab
initio molecular orbital (MO) theory] is only, in effect,
relevant to studying isolated systems. Thus a dimer, or
perhaps a small cluster, is constructed to model a property
of matter that occurs over a three-dimensional network.
Without periodic boundary conditions, the dangling valency
sites and absence of crystal packing forces may result in an
optimised structure significantly different from the solid-state

structure it was designed to imitate. Hydrogen bonding has
also been described as a nonadditive effect;[1] that is, the
strength of a network of N interconnected hydrogen bonds is
not just the sum of N isolated bonds. In these cases, it is
therefore undesirable to split up the network into individual
hydrogen bonds and calculate the energy of each one.
Moreover, in the solid state, the lone pair on the electron-
donor atom (e.g. nitrogen or oxygen) will often interact with
two or even three hydrogen (acceptor) atoms, creating bi- or
trifurcated hydrogen bonds,[1] whereas the optimised models
of the nonperiodic dimer complexes used to mimic the solid-
state structure may contain only standard hydrogen bonds, in
which the donor interacts with only one acceptor.
Aside from the validity of the models used, a further

problem may arise from the use of localised basis sets to
estimate binding energies. The results obtained may suffer
from basis-set-superposition error (BSSE), which can result in
an overestimation of binding energies and must be corrected
for. Attempts to account for this effect mostly employ the
Counterpoise method,[2] but some studies in the literature
point to this correction as being strongly dependent on the
quality of the basis sets used.[3]

For all these reasons, the task of calculating the properties
of hydrogen bonds in the solid state really needs a style of
modelling in which periodicity is inherent in the calculation.
One such method is Car ±Parrinello or plane-wave density
functional theory,[4] which can simulate a repeating model
such as a crystallographic unit cell. The atomic positions and
lattice vectors can all be varied to minimise the lattice energy,
atomic forces and unit cell stress. As the valence-electron
treatment is delocalised in this style of calculation, any
calculated binding energies will be free from BSSE. More-
over, this style of computational modelling is very versatile;
once convergence with respect to the basis set has been
achieved, the dimensions of the periodic cell used can take
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any size or shape. Taking the crystal structure coordinates as
the starting point, the unit cell parameters and atomic
positions are optimised alternately until convergence is met.
Removing all but one molecule from the periodic cell, and
stretching the cell vectors (so that the remaining molecule
cannot ™see∫ its counterparts in neighbouring cells), will allow
the energy of one (effectively gas-phase) molecule to be
determined. As the same basis set and level of theory are
employed in both cases, comparing the absolute energies
obtained is valid. This therefore allows the determination of
lattice or sublimation energies (after correcting for atom
relaxation in the gas phase and zero-point-energy effects); this
in turn allows the strengths of intermolecular interactions to
be inferred.
The main purpose of this paper is to demonstrate the

application of plane-wave DFT to the determination of the
lattice energies and strengths of hydrogen bonds in the solid-
state structures of ammonia and urea. Both compounds have
previously been subjected to extensive calculations by ab
initio MO theory by using dimer models to deduce the
strengths of intermolecular interactions in the gas phase. This
paper begins with a brief summary of what is currently
available in the literature, before discussing the results
obtained for the ammonia and urea test cases.

Hydrogen bonds–ammonia : Despite the difficulties in de-
termining the strength of the hydrogen bond between
molecules of ammonia from experiment, a number of
attempts have been made. Most undergraduate textbooks
quote the interaction strength as 17.0 kJmol�1,[5] although no
reference is cited as to how this value has been obtained. A
very elegant paper by Scheraga et al,[6] highlights all the steps
necessary to determine the lattice and sublimation energies
on the basis of thermodynamic measurements. Their value for
the sublimation energy, 29.0(42) kJmol�1, gives a hydrogen
bond energy of 9.7(14) kJmol�1, assuming that all the
interaction energy in the crystal lattice is due to hydrogen
bonding and that each ammonia molecule is involved in six
hydrogen bonds (i.e., bond order 3). Another experimental
(microwave) study focuses on the gas-phase ammonia dimer
and places an upper boundary of 11.7 kJmol�1 on the hydro-
gen bond dissociation energy.[7a] It should be noted that the
interaction present in the ammonia dimer (i.e. , gas phase)[7a,b]

is very different from that which occurs in the condensed
state.[8a,b] In the dimer model a standard hydrogen bond occurs
in which the nitrogen lone pair donates electrons to one
neighbouring hydrogen atom. In the solid state the lone pair
donates electrons to three neighbouring hydrogen atoms (i.e.,

a trifurcated bond, see Fig-
ure 1). In any case, regardless
of whether the measurements
relate to the gas or solid phase,
both experimental results are
at odds with the textbook
value.
A number of different dimer

structures have been reported
on the basis of ab initio molec-
ular-orbital calculations. Some

reports refer to a classical linear dimer structure,[9a,b] while
other calculations refer to a nonlinear dimer[9c] or cyclic
structure (with two hydrogen bonds per dimer)[9b] as being
almost degenerate in energy. Subsequent variations in the
reported hydrogen bond strengths range from 6.6 to
13.1 kJmol�1.[9] Microwave studies,[7a,b] favour the nonlinear
dimer structure on the basis of measured dipole moments.
From this literature survey it is clear that the potential-energy
surface for the ammonia dimer system is very complicated,
and leaves the determination of the intermolecular interac-
tion energy in the solid state as an interesting challenge.

Hydrogen bonds–urea : There are two different N-H ¥ ¥ ¥O
interactions present in the phase I crystal structure of urea;[10]

one links planar molecules together to form chains, whilst the
other occurs between perpendicular chains that run in
opposite directions. The hydrogen bond order for each urea
molecule is four (Figure 2).

Figure 2. The phase I crystal structure of urea, showing a) N-H ¥ ¥ ¥O(1)
and b) N-H ¥ ¥ ¥O(2) hydrogen bonding interactions.

Two computational studies reported in the literature model
properties of hydrogen bonds in the solid state.[11±12] Both
employ the Hartree ± Fock Linear Combination of Atomic
Orbitals (HF-LCAO) approach for periodic systems as
implemented in the CRYSTAL suite of software.[13] Using a
double-zeta quality basis set Dovesi et al.[11] report an average
hydrogen bond energy of 18.2 kJmol�1 after Counterpoise
correction (albeit with no mention of zero-point energy
correction, or optimisation of the crystal structure coordinates
or cell parameters); this compares well with the experimental
value (21.9 kJmol�1) obtained from the sublimation energy.[14]

Gatti et al.[12] report a study of the topology of the electron
density using Bader×s Atoms in Molecules (AIM) method,[15]

rationalising the ability of the carbonyl oxygen to form two
bonds in the gas phase and four in the solid. They predict that

Figure 1. The phase I crystal
structure of ammonia.
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N-H ¥ ¥ ¥O(1) should be shorter (and stronger) than
N-H ¥ ¥ ¥O(2) (Figure 2). Another experimental/theoretical
report (based on a modified atom± atom approximation
scheme, parameterised by using experimental X-ray and
theoretical Hartree ± Fock structure amplitudes) has assigned
values of 15.7 kJmol�1 and 28.2 kJmol�1 to N-H ¥ ¥ ¥O(1) and
N-H ¥ ¥ ¥O(2), respectively.[16] Their average hydrogen bond
strength, at 21.9 kJmol�1, is a perfect match with experiment,
but the ordering of the strengths of the two interactions is the
reverse of that predicted by Gatti.
There are several reports in the literature of ab initio

molecular-orbital calculations for the dimer species [Fig-
ure 3a], which to a first approximation could be used to model

Figure 3. Urea models: a) Isolated molecule dimer model (C2v) used in ab
initio MO calculations, b) model with one stack of urea molecules removed
[destroying contact N-H ¥ ¥ ¥O(1)] and c) model stretched along lattice
vector ™c∫ [destroying contact N-H ¥ ¥ ¥O(2)].

the interactions that occur between molecules in a chain in the
crystal lattice [i.e. , N-H ¥ ¥ ¥O(2)]. Reported values for the
strength of this hydrogen bond are about 17 kJmol�1,[17±18]

falling to 15 kJmol�1 after Counterpoise correction. Exem-
plary work by Dannenberg
et al.[18] shows that as this dimer
unit is extended to form an
infinite one-dimensional chain,
the strength of the intermolec-
ular interaction increases by
almost 10 kJmol�1; this illus-
trates nicely the principle of
bond nonadditivity due to res-
onance effects. There are no
publications reported on dimer
models appropriate to model
the interaction that occurs be-
tween perpendicular chains in
the crystal lattice [i.e. N-H ¥ ¥ ¥O
(1)]. It is therefore our objec-
tive to demonstrate the use of
plane-wave DFT to determine
the strengths of both interac-
tions in the proper periodic
framework of the phase I crys-

tal structure of urea, and thus determine which of the two
interactions is stronger.

Results and Discussion

Ammonia : Our calculated structure (geometry and lattice
vectors) matches very closely with the experimental results of
Hewat et al.[8a] for ND3 at 2 K (neutron diffraction) (Table 1),
and also with the most recent work by Boese et al. on NH3 at
160 K (X-ray diffraction).[8b] The volumes of the two exper-
imental cells differ by almost 5%, but this can be entirely
attributed to thermal expansion, as the same authors report an
almost identical cell volume for ND3 at 180 K.[8a]

The calculated unit-cell volume is within 6.5% of that
determined by Hewat and 1.5% of the volume determined
experimentally by Boese. The very close match with Boese×s
value should not be treated as an indication of the accuracy of
the calculation, as DFT calculations with generalised gradient
approximation (GGA) functionals always tend to simulate
cells with slightly larger volumes. Indeed, comparison with the
ND3 molecular geometry at 2 K is more relevant in this case,
as our calculation refers to the equilibrium structure (i.e.,
0 K), and any isotope effect on geometry will be negligible at
such a low temperature. In addition, a neutron-diffraction
study, measuring internuclear distances (rather than the
distances between areas of high electron density as with
X-ray diffraction) is clearly more relevant for a direct
comparison with theory. For these reasons, the experimental
values of Hewat, rather than those of Boese, are provided for
comparison with theory in Table 1.
In general, our calculated molecular geometry is in good

agreement with the experimental structure, with the N�H
bond length reproduced to within 0.03 ä and the two N ¥ ¥ ¥H
separations to within 0.03 and 0.003 ä of the experimental
values. The two angles, H-N-H and N-H ¥ ¥ ¥N, are also in good
agreement with experiment (within 0.3� and 1.8�, respective-

Table 1. Comparison between the experimental and calculated structures of solid ammonia.

Experimental Calculated
Parameters Solid[a] Gas[b] Solid Supercell Supercell

(not relaxed) (relaxed)

Lattice [ä, �]
a� b� c 5.048 ± 5.156 8.000 8.000
�, �, � 90 ± 90 90 90
Z 4 ± 4 1 1
Volume [ä3] 128.6 ± 137.0 512.0 512.0
Space/point group P213 ± P213 C3v C3v
Geometry [ä, �]
rN-H 1.061(5) 1.008(4) 1.029 1.029 1.022
rN ¥ ¥ ¥H 2.357(2) ± 2.329 ± ±
rN ¥ ¥ ¥H 3.325(2) ± 3.322 ± ±
�H-N-H 107.5(2) 107.4(2) 107.8 107.8 108.0
�N-H ¥ ¥ ¥N 160.0(2) ± 161.8 ± ±
Energy
Total energy [eV] ± ± � 1286.342489 � 321.218044 � 321.220686
Lattice energy [kJmol�1] 36(4) ± ± 35.4 ±
Sublimation energy [kJmol�1] 29(4)[c] ± ± ± 27.9
H-bond strength [kJmol�1][d] 9.6(14) ± ± ± 9.3

[a] From ref. [8a]. [b] From ref. [19]. [c] From ref. [6]. [d] Estimated from �Hsub (i.e., �Hsub/3).
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ly). Finally, the N ¥ ¥ ¥N separation in our calculation models
the experimental bond distance to within 1%.
The molecular geometry of NH3, calculated by using the

supercell (i.e., isolated molecule) approach and plane wave
basis set, is also very close to the experimental (gas phase)
geometry,[19] and is no less accurate than the most sophisti-
cated localised basis-set calculation. Although for a true gas-
phase calculation the localised basis set approach is clearly the
more appropriate method, our calculations nevertheless
demonstrate the strength of the periodic style of calculation
to reproduce gas-phase geometries. The H-N-H bond angle, at
108.0�, is within the range obtained by most ab initio MO
calculations (104.2 ± 108.3�).[8b]

The results from our calculations show that the molecular
geometry of ammonia changes very little upon condensing
from the gas to the solid phase, with �H-N-H decreasing by
0.2� and rN�H increasing by just 0.007 ä. From experiment,
the evidence for structural change is ambiguous: Hewat[8a] and
Olovsson[20] found an increase in the N�H bond length [by
0.05 ä (neutron diffraction, 2 K) and 0.11 ä (X-ray diffrac-
tion, 170 K)] and very small changes in the H-N-H angle (of
�0.1� and �0.4�, respectively), but Reed[21] and Boese[8b]

report rN�H shortening [by 0.003 ä (neutron diffraction,
77 K) and 0.17 ä (X-ray diffraction, 160 K)] and much larger
changes for �H-N-H (�1.6� and �3.0�, respectively), as
compared with the gas-phase microwave structure.[19] What is
clear, however, is that any change in molecular geometry due
to a change in phase is small, and therefore any close analysis
for systematic differences in experimental data obtained by
using different methods at varying temperatures is not a
straightforward exercise. On the other hand, the calculations
we have performed on the crystal lattice and supercell models
were carried out as much as possible under the same
computational constraints, and therefore perhaps allow for a
more meaningful comparison to be made.
The lattice energy for the phase I structure of ammonia is

calculated as the energy difference between a single, fully
optimised molecule in the crystal environment (i.e., unit cell
energy/Z, here Z� 4) and a single-point energy calculation of
one molecule (in the crystal structure molecular geometry) in
the 8� 8� 8 ä3 supercell. The value obtained, 35.4 kJmol�1,
is a very close match with the experimental value,
36(4) kJmol�1;[6] this bears testament to the quality of the
calculations performed. To obtain the sublimation energy
from the lattice energy (and thus deduce the strength of
hydrogen bonds in the crystal structure) two further steps are
required: i) relax the isolated molecule (i.e. , obtain the gas-
phase geometry), and ii) correct the crystal lattice energy for
the effects of intermolecular zero-point vibrational energy
(i.e., assuming corrections for the intramolecular vibrations in
the solid and gas phase to be the same, therefore cancelling
each other out). The first step is straightforward, but for the
second the software package we used does not currently
support the calculations required to obtain the correction
factor.[4] We have therefore taken the experimental value for
the approximate zero-point vibration correction as reported
by Scheraga et al. (7.33 kJmol�1).[6] Our calculated value for
the sublimation energy will therefore also closely resemble
the experimental value (27.9 vs. 29(4) kJmol�1).

We note in passing that Eucken et al. have also reported a
value for the sublimation energy of ammonia.[22] At
31.4 kJmol�1, it is a little higher than that derived by
Scheraga,[6] but given that their value was obtained at 169 K,
not 0 K (as with Scheraga and our calculations), when the
necessary enthalpy corrections to cool the solid and gas
phases to 0 K are included we would expect their number to
fall by 2 ± 3 kJmol�1.[6]

Assuming that the interaction energy is due solely to
hydrogen bonding,[23] and that each ammonia molecule in the
crystal lattice is a three-bond donor and acceptor, our
calculated sublimation energy assigns a value of 9.3 kJmol�1

per N-H ¥ ¥ ¥N interaction. It would therefore appear that the
energies of the three components of the trifurcated bond are
each almost equivalent to that of a standard N-H ¥ ¥ ¥N
interaction, that is, the interaction energy per ammonia
molecule in the solid state is nearly three times that
determined for the gas-phase dimer. From a comparison of
the electron-density maps for ammonia in the crystal lattice
and supercell (see Supporting Information, Figure 1a and b),
it would appear that there is no discernible change in the size
or position of the lone pair upon formation of hydrogen
bonds. This would perhaps indicate that the nature of the
interaction is largely electrostatic, rather than due to a
donation of electrons. For completeness, we also offer
electron density images of the hydrogen bonds in the crystal
lattice (Supporting Information, Figure 1c and d). As far as we
are aware this is the first comparative study of standard versus
trifurcated hydrogen bond strengths.

Urea : The results obtained from the unit cell and geometry
optimisation for the phase I crystal structure of urea (equilib-
rium structure) are given in Table 2, alongside the exper-
imental structure (neutron diffraction, 12 K) for direct
comparison. From this it can be seen that, as with ammonia,
the plane-wave DFT calculation slightly overestimates the
volume of the unit cell. However, the volume increase is less
than 1.5%, which translates to an increase in unit cell vectors
of no more than 0.04 ä for lattice vectors ™a∫ and ™b∫ (or
0.005 ä for lattice vector ™c∫). The molecular structure is also
well reproduced, with rC�O and rC�N modelled to within
about 0.005 ä of experimental values. The N�H bond lengths
are overestimated in the simulation by about 0.015 ä.
However, Swaminathan et al.[10] note that applying correc-
tions for harmonic thermal motion increases these lengths to
about 1.020 ä, which would be in very strong agreement with
the calculation. The two hydrogen bond lengths are both
modelled to well within 0.01 ä.
The molecular structure obtained in the supercell calcu-

lation, is also a good match for the experimental (microwave)
geometry.[24] In particular, care was taken to ensure that the
structure fell into the puckered (C2) geometry, which has been
found by several computational studies to be the global
minimum,[25] rather than the planar (C2v) local-minimum
structure. Considering the geometry itself, the accuracy of the
structure returned in the plane-wave DFT calculation is
comparable to that obtained from high-level ab initio MO
calculations, although the C�N bond is found to be a little bit
shorter (by about 0.01 ä).[25]
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The lattice energy for urea has been determined in exactly the
same way as for ammonia (i.e., Hlattice�Eunit cell/Z�Esupercell),
although in this case there is no experimental value available
in the literature for comparison. Our estimate of the
sublimation energy has been obtained by introducing a
correction for solid-to-gas molecular structure relaxation,
but no correction for zero-point energy has been applied at
this time. An experimental value for the sublimation energy is
available,[14] and at 87.6(9) kJmol�1 it shows our calculated
value (81.3 kJmol�1) to be in approximately the right area.
The calculated sublimation energy allows us to determine

the average hydrogen bond strength. As each urea molecule
has a hydrogen bond order of four (Figure 2), we calculate the
average hydrogen bond strength to be 20.3 kJmol�1, which is
very close to the experimental value (21.9 kJmol�1), and
closer than previous computational attempts,[11±12] which
presumably can be largely attributed to the introduction of
electron correlation in the calculation. It should also be
remembered that this average value refers to urea molecules
in a periodic environment; the interactions will be strength-
ened due to resonance-enhanced bond cooperativity. As
mentioned above, ab initio MO calculations for the urea
dimer structure (i.e., without resonance enhancement, and
just for interaction N-H ¥ ¥ ¥O(2), Figure 3a) give a value of
about 15 kJmol�1 after Counterpoise correction.[18]

The primary aim of our calculations was to determine the
strengths of the two different interactions, rN-H ¥ ¥ ¥O(1) and
rN-H ¥ ¥ ¥O(2), rather than just the average value. Accordingly,
two further models were subjected to calculation: in the first,
one molecule was removed from the unit cell, thus deleting a
chain of urea molecules from the crystal lattice, destroying
contact rN-H ¥ ¥ ¥O(1) but retaining rN-H ¥ ¥ ¥O(2), and in the
second lattice parameter ™c∫ was stretched from 4.6 to 9.0 ä
(to destroy contact rN-H ¥ ¥ ¥O(2), Figure 3b and c). The results
from these calculations are given in Table 3. From this, some
interesting geometrical features can be monitored as hydro-
gen bonds are formed. Model B is fictitious, and as such

cannot be substantiated by experiment. Model C, however, is
to all intents and purposes the same as the supercell
calculation (but with a planar (C2v), rather than puckered
(C2) geometry), which has already been shown above to
reproduce the gas-phase experimental geometry to within
0.01 ä. The changes in the molecular structure of urea upon
hydrogen bond formation can be summarised as follows:
rC�O and rN�H both lengthen (by about 0.04 and 0.01 ä,
respectively), and rC�N shortens (by about 0.02 ä). These
observations are entirely consistent with resonance-enhanced
bond cooperativity. The carbonyl group donates electron
density to the hydrogen bonds (thus lengthening them), and
rN�H will lengthen as the proton is drawn into the hydrogen

Table 2. Comparison between the experimental and calculated structures of solid urea.

Parameters Experimental Calculated
Solid[a] Gas[b] Solid Supercell Supercell

(not relaxed) (relaxed)

Lattice [ä, �]
a� b 5.565 ± 5.604 10.0 10.0
c 4.684 ± 4.689 10.0 10.0
�, �, � 90.0 ± 90.0 90.0 90.0
Z 2 ± 2 1 1
Volume [ä3] 145.1 ± 147.1 1000.0 1000.0
Space/point group P4≈21m ± P4≈21m C2v C2

Geometry [ä]
rC-O 1.261(2) 1.221 1.269 1.269 1.229
rC-N 1.345(1) 1.378 1.343 1.343 1.367
rN-H(1); rN-H(2) 1.009(2); 1.005(2) 1.021; 0.998 1.025; 1.024 1.025; 1.024 1.014; 1.014
rH ¥ ¥ ¥O(1) 1.992(2) ± 1.994 ± ±
rH ¥ ¥ ¥O(2) 2.058(2) ± 2.046 ± ±
Energy
Total energy [eV] ± ± � 2408.699947 � 1203.402552 � 1203.5071909
Lattice energy [kJmol�1] ± ± ± 91.4 ±
Sublimation energy [kJmol�1] 87.6(9)[c] ± ± ± 81.3
Average H-bond strength [kJmol�1][d] 21.9 ± ± ± 20.3

[a] From ref. [10]. [b] From ref. [24]. [c] From ref. [14]. [d] Estimated from �Hsub (i.e., �Hsub/4).

Table 3. Calculation results for urea models B and C (see Figure 3b, c and
text).

Parameters Model B Model C
(relaxed) (relaxed)

Lattice [ä, �]
a� b 5.604 5.604
c 4.689 9.000
�, �, � 90.0 90.0
Z 1 1
Volume [ä3] 147.1 282.6
Point group C2v C2v
Geometry [ä]
rC-O 1.251 1.228
rC-N 1.352 1.367
rN-H(1); rN-H(2) 1.013; 1.025 1.013
rN-H ¥ ¥ ¥O(1) ± ±
rN-H ¥ ¥ ¥O(2) 2.021 ±
Energy
Total energy [eV] � 1204.007852 � 1203.510237
rN-H ¥ ¥ ¥O(1) 16.5 ±
[kJmol�1 per bond][a]

rN-H ¥ ¥ ¥O(2) ± 24.0
[kJmol�1 per bond][b]

[a] �E[rN-H ¥ ¥ ¥O(1)]� (Esolid/Z�Emodel B)/2. [b] �E[rN-H ¥ ¥ ¥O(2)]�
(Emodel B�Emodel C)/2.
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bond potential well. Finally, rC�N will shorten as the nitrogen
lone pair is attracted towards the electron-diminished carbon
centre.
Comparing the energies obtained for models B and C with

that of the optimised cell allows the strengths of the two
hydrogen bonds to be obtained. Thus breaking first the
interaction N-H ¥ ¥ ¥O(1) costs 16.5 kJmol�1 and then
breaking N-H ¥ ¥ ¥O(2) costs a further 24.0 kJmol�1. These
numbers compare very favourably with those obtained
from the experimental/theoretical study detailed above (15.7
and 28.2 kJmol�1, respectively).[16] Therefore, although
N-H ¥ ¥ ¥O(1) is the shorter of the two interactions, it is also
the weaker; this may appear surprising to a first approxima-
tion. However, it should be remembered that hydrogen bonds
in the solid state are practically never in their optimal
geometry, and are always influenced by their surrounding
environment.[1] This highlights another reason why hydrogen
bond energies obtained by the ab initio MO theory route of
isolated-dimer models should be used with caution when used
to develop an understanding of properties of the solid state.

Conclusion

In this paper we have demonstrated the use of plane-wave
density functional theory to calculate the strengths of hydro-
gen bonds in periodic lattices. For ammonia, we have been
able to reproduce the experimental lattice energy to within
1 kJmol�1, which allowed us to determine the strength of the
trifurcated bond in the crystal structure. This has been shown
to be very similar to that of the standard hydrogen bond
present in gas-phase ammonia dimers. For urea, we were able
to calculate individual values for the two different hydrogen
bonds present in the periodic crystal lattice from a purely
theoretical study for the first time, and show that the shorter
bond is actually the weaker of the two interactions.

Computational Methods

Crystal lattice calculations : Total energy density functional theory calcu-
lations have been carried out on the phase I crystal structures of ammonia
and urea by using the CASTEP package available through the Materials
Studio suite of software.[4] Periodic boundary conditions allow the valence
electronic wave function to be expanded in terms of a discrete plane-wave
basis set, which can be continuously improved until a desired convergence
level is reached. The basis sets expressed at cut-offs 550 eV (for ammonia)
and 600 eV (for urea) converged the total energies to better than 2.0 meV
per unit cell. The electronic core wave function was described by using the
standard ultrasoft pseudopotentials available with the software package.
Bloch×s theorem allows the calculation to run in reciprocal space (i.e., k-
space); this significantly improves calculation efficiency. The symmetry-
reduced k-point sets used to sample the reciprocal space were generated by
using Monkhurst ± Pack grids[26] (dimensions 6� 6� 6, giving 11 k-points in
the symmetry-reduced first Brillouin zone for ammonia and 4� 4� 4,
giving 6 k-points, for urea). The Fast Fourier Transformation (FFT) grid
used to communicate between real and reciprocal space was set at 25% in
excess of levels prescribed by the program in order to minimise wrap-
around errors in the transformation. The GGA functionals PW91[27] and
PBE[28] were used to model electronic exchange and correlation for
ammonia and urea, respectively.

For ammonia, the initial structure was taken from an X-ray diffraction
structure determination by Boese et al.[8b] for the phase I, ambient-pressure

cubic crystal system. Optimisation of atomic positions and unit cell
parameters were performed on alternate cycles by using the BFGS method
until the convergence criteria were met (maximum energy change per
atom� 5� 10�6 eV, maximum root-mean-square force� 0.01 eVä�1, max-
imum RMS stress� 0.02 GPa and maximum RMS displacement� 5.0�
10�4 ä). For urea, the starting coordinates and unit cell dimensions were
taken from a low-temperature (12 K), ambient-pressure neutron diffrac-
tion structure by Swaminathan et al.[10] Optimisation was performed in the
same fashion as for ammonia until convergence was achieved (maximum
energy change per atom� 2� 10�5 eV, maximum RMS force� 0.05 eVä�1,
maximum RMS stress� 0.1 GPa and maximum RMS displacement� 2.0�
10�3 ä).

Supercell calculations : Supercell calculations were performed on single,
isolated molecules of ammonia and urea (effectively the gas phase) for
comparison with the energy per molecule in the solid state, and thus
allowing the deduction of the total intermolecular interaction energies in
the two crystal structures. Zero interaction between the nearest neighbour-
ing cells was obtained by increasing the cell size and observing the change
in total energy. Cell sizes of 8� 8� 8 ä3 for ammonia and 10� 10� 10 ä3

for urea were found to break all intermolecular interactions, without giving
rise to overly long computational times. The basis set cut-off energies used
previously (550 and 600 eV) were sufficiently high to avoid lowering of the
total energy due to the increase in the number of plane waves in the basis
sets (as the cell volume increases). Thus, the comparison of energies
between the supercell and crystal lattice calculations is legitimate; we
estimate any error incurred due to inconsistencies in basis sets to be within
0.001 ± 0.003 eV (i.e., 0.1 ± 0.3 kJmol�1) per hydrogen bond.

Models used to determine the strengths of N-H ¥¥¥O(1) and N-H ¥¥¥O(2) in
urea : Given that two different interactions are present in the phase I
structure of urea, rather than just determining the total interaction energy
by a supercell calculation, we also performed calculations on two other cells
in order to be able to determine the interaction energies of the individual
hydrogen bonds directly. To this end, two periodic models were con-
structed: in the first, one molecule was removed from the unit cell, thus
deleting one stack of urea molecules from the crystal lattice and destroying
the N-H ¥ ¥ ¥O(1) contact (Figure 3b). In the second, the lattice parameter
™c∫ was stretched to 9 ä, thus ensuring that all N-H ¥ ¥ ¥O(2) contacts were
broken (Figure 3c). By comparing the energies (per molecule) obtained for
these two models with that of the optimised crystal lattice, the hydrogen
bond energies were deduced. The same cut-off energy (600 eV) was used as
with the crystal lattice and supercell calculation, with very similar k-point
sampling grids (reduced to 4� 4� 3 for the stretched lattice).
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